next | previous | forward | backward | up | top | index | toc | packages | Macaulay2 website
SubalgebraBases :: subringIntersection

subringIntersection -- Intersection of subrings

Synopsis

Description

Computes the intersection of subrings "S_1" and "S_2". These subrings must be subrings of the same ambient ring. The ambient ring is allowed to be a polynomial ring or the quotient of a polynomial ring.

i1 : R = QQ[x,y];
i2 : I = ideal(x^3 + x*y^2 + y^3);

o2 : Ideal of R
i3 : Q = R/I;
i4 : S1 = subring {x^2, x*y};
i5 : S2 = subring {x, y^2};
i6 : S = subringIntersection(S1, S2);
 -- 0.0023218 seconds elapsed
 -- 0.0150026 seconds elapsed
 -- 0.0054326 seconds elapsed
 -- 0.002074 seconds elapsed
 -- 0.0137712 seconds elapsed
 -- 0.0057378 seconds elapsed
 -- 0.0015749 seconds elapsed
 -- 0.0019147 seconds elapsed
 -- 0.0055915 seconds elapsed
 -- 0.0019552 seconds elapsed
 -- 0.0131532 seconds elapsed
 -- 0.0052813 seconds elapsed
 -- 0.0022025 seconds elapsed
 -- 0.0125698 seconds elapsed
 -- 0.005011 seconds elapsed
 -- 0.0019513 seconds elapsed
 -- 0.0142555 seconds elapsed
 -- 0.0046865 seconds elapsed
 -- 0.0020329 seconds elapsed
 -- 0.0125411 seconds elapsed
 -- 0.0048297 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
i7 : gens S

o7 = | x2 x2y2+xy3 y4 xy3 y6 xy5 |

             1       6
o7 : Matrix Q  <--- Q
i8 : isSAGBI S
 -- 0.0018178 seconds elapsed
 -- 0.0151855 seconds elapsed
 -- 0.0052141 seconds elapsed
 -- 0.001928 seconds elapsed
 -- 0.0137792 seconds elapsed
 -- 0.0056389 seconds elapsed
 -- 0.0036945 seconds elapsed
 -- 0.0259384 seconds elapsed
 -- 0.0096468 seconds elapsed
 -- 0.0018429 seconds elapsed
 -- 0.0259216 seconds elapsed
 -- 0.0098153 seconds elapsed
 -- 0.0033939 seconds elapsed
 -- 0.0212125 seconds elapsed
 -- 0.0055782 seconds elapsed
 -- 0.0034523 seconds elapsed
 -- 0.0244502 seconds elapsed
 -- 0.0082994 seconds elapsed
 -- 0.0019611 seconds elapsed
 -- 0.0194423 seconds elapsed
 -- 0.0061345 seconds elapsed
 -- 0.0025957 seconds elapsed
 -- 0.0174533 seconds elapsed
 -- 0.0068514 seconds elapsed
 -- 0.0021706 seconds elapsed
 -- 0.0158178 seconds elapsed
 -- 0.0063241 seconds elapsed
 -- 0.002045 seconds elapsed
 -- 0.01455 seconds elapsed
 -- 0.0067605 seconds elapsed
 -- 0.0034627 seconds elapsed
 -- 0.0252399 seconds elapsed
 -- 0.0094138 seconds elapsed
 -- 0.0035034 seconds elapsed
 -- 0.0181569 seconds elapsed
 -- 0.0065074 seconds elapsed
 -- 0.0032481 seconds elapsed
 -- 0.0352262 seconds elapsed
 -- 0.0137666 seconds elapsed
 -- 0.0020701 seconds elapsed
 -- 0.022255 seconds elapsed
 -- 0.0082859 seconds elapsed
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction
timing raw subduction

o8 = true

If the generators of $S$ form a sagbi basis and the degree limit is high enough, then they are a generating set for the intersection.

See also

Ways to use subringIntersection :

For the programmer

The object subringIntersection is a method function with options.