TateOnProducts : Index
-
actionOnDirectImage -- recover the module structure via a Noether normalization
-
actionOnDirectImage(Ideal,ChainComplex) -- recover the module structure via a Noether normalization
-
actionOnDirectImage(Ideal,Module) -- recover the module structure via a Noether normalization
-
actionOnDirectImage(Ideal,Module,Matrix) -- recover the module structure via a Noether normalization
-
beilinson -- apply the beilinson functor
-
beilinson(...,BundleType=>...) -- apply the beilinson functor
-
beilinson(ChainComplex) -- apply the beilinson functor
-
beilinson(Matrix) -- apply the beilinson functor
-
beilinson(Module) -- apply the beilinson functor
-
beilinsonBundle -- compute a basic Beilinson bundle
-
beilinsonBundle(...,BundleType=>...) -- compute a basic Beilinson bundle
-
beilinsonBundle(List,Ring) -- compute a basic Beilinson bundle
-
beilinsonBundle(ZZ,ZZ,Ring) -- compute a basic Beilinson bundle
-
beilinsonContraction -- compute a Beilinson contraction
-
beilinsonContraction(...,BundleType=>...) -- compute a Beilinson contraction
-
beilinsonContraction(RingElement,List,List) -- compute a Beilinson contraction
-
beilinsonWindow -- extract the subquotient complex which contributes to the Beilinson window
-
beilinsonWindow(ChainComplex) -- extract the subquotient complex which contributes to the Beilinson window
-
bgg -- make a linear free complex from a module over an exterior algebra or a symmetric algebra
-
bgg(...,LengthLimit=>...) -- make a linear free complex from a module over an exterior algebra or a symmetric algebra
-
bgg(Module) -- make a linear free complex from a module over an exterior algebra or a symmetric algebra
-
BundleType -- Option in beilinson with values PrunedQuotient, QuotientBundle, DummyQuotientBundle, SubBundle, FreeBundle, or MapsBetweenFreeBundles
-
coarseMultigradedRegularity -- A truncation that has linear resolution
-
coarseMultigradedRegularity(...,Strategy=>...) -- A truncation that has linear resolution
-
coarseMultigradedRegularity(ChainComplex) -- A truncation that has linear resolution
-
coarseMultigradedRegularity(Module) -- A truncation that has linear resolution
-
CoefficientField -- Option for productOfProjectiveSpaces
-
cohomologyHashTable -- cohomology groups of a sheaf on a product of projective spaces, or of (part) of a Tate resolution
-
cohomologyHashTable(ChainComplex,List,List) -- cohomology groups of a sheaf on a product of projective spaces, or of (part) of a Tate resolution
-
cohomologyHashTable(Module,List,List) -- cohomology groups of a sheaf on a product of projective spaces, or of (part) of a Tate resolution
-
cohomologyMatrix -- cohomology groups of a sheaf on P^{n_1}xP^{n_2}, or of (part) of a Tate resolution
-
cohomologyMatrix(ChainComplex,List,List) -- cohomology groups of a sheaf on P^{n_1}xP^{n_2}, or of (part) of a Tate resolution
-
cohomologyMatrix(Module,List,List) -- cohomology groups of a sheaf on P^{n_1}xP^{n_2}, or of (part) of a Tate resolution
-
CohomologyVariables -- Option for productOfProjectiveSpaces
-
composedFunctions -- composed functions
-
ContractionData -- name of a cached datum
-
contractionData -- Compute the action of monomials in the exterior algebra on the Beilinson monad
-
contractionData(...,BundleType=>...) -- Compute the action of monomials in the exterior algebra on the Beilinson monad
-
contractionData(List,List,Ring) -- Compute the action of monomials in the exterior algebra on the Beilinson monad
-
cornerComplex -- form the corner complex
-
cornerComplex(ChainComplex,List) -- form the corner complex
-
cornerComplex(Module,List,List,List) -- form the corner complex
-
directImageComplex -- compute the direct image complex
-
directImageComplex(Ideal,Module,Matrix) -- compute the direct image complex
-
directImageComplex(Module,List) -- compute the direct image complex
-
DummyQuotientBundle -- value for the option BundleType in beilinson
-
eulerPolynomialTable -- cohomology groups of a sheaf on a product of projective spaces, or of (part) of a Tate resolution
-
eulerPolynomialTable(ChainComplex,List,List) -- cohomology groups of a sheaf on a product of projective spaces, or of (part) of a Tate resolution
-
eulerPolynomialTable(HashTable) -- cohomology groups of a sheaf on a product of projective spaces, or of (part) of a Tate resolution
-
eulerPolynomialTable(Module,List,List) -- cohomology groups of a sheaf on a product of projective spaces, or of (part) of a Tate resolution
-
firstQuadrantComplex -- form the first quadrant complex
-
firstQuadrantComplex(ChainComplex,List) -- form the first quadrant complex
-
FreeBundle -- value for the option BundleType in beilinson
-
InitialDegree -- Option for chainComplexMap
-
isAction -- test whether a list of square matrices induces an action
-
isAction(Ideal,List) -- test whether a list of square matrices induces an action
-
isIsomorphic -- probabilistic test for homogeneous isomorphism
-
isIsomorphic(Module,Module) -- probabilistic test for homogeneous isomorphism
-
isQuism -- Test to see if the ChainComplexMap is a quasiisomorphism.
-
isQuism(ChainComplexMap) -- Test to see if the ChainComplexMap is a quasiisomorphism.
-
lastQuadrantComplex -- form the last quadrant complex
-
lastQuadrantComplex(ChainComplex,List) -- form the last quadrant complex
-
lowerCorner -- compute the lower corner
-
lowerCorner(ChainComplex,List) -- compute the lower corner
-
MapsBetweenFreeBundles -- value for the option BundleType in beilinson
-
productOfProjectiveSpaces -- Cox ring of a product of projective spaces and it Koszul dual exterior algebra
-
productOfProjectiveSpaces(...,CoefficientField=>...) -- Cox ring of a product of projective spaces and it Koszul dual exterior algebra
-
productOfProjectiveSpaces(...,CohomologyVariables=>...) -- Cox ring of a product of projective spaces and it Koszul dual exterior algebra
-
productOfProjectiveSpaces(...,Variables=>...) -- Cox ring of a product of projective spaces and it Koszul dual exterior algebra
-
productOfProjectiveSpaces(List) -- Cox ring of a product of projective spaces and it Koszul dual exterior algebra
-
productOfProjectiveSpaces(ZZ) -- Cox ring of a product of projective spaces and it Koszul dual exterior algebra
-
PrunedQuotient -- value for the option BundleType in beilinson
-
QuotientBundle -- value for the option BundleType in beilinson
-
regionComplex -- region complex
-
regionComplex(ChainComplex,List,Sequence) -- region complex
-
Rings -- Option for productOfProjectiveSpaces
-
strand -- take the strand
-
strand(ChainComplex,List,List) -- take the strand
-
SubBundle -- value for the option BundleType in beilinson
-
symExt -- from linear presentation matrices over S to linear presentation matrices over E and conversely
-
symExt(Matrix,Ring) -- from linear presentation matrices over S to linear presentation matrices over E and conversely
-
tallyDegrees -- collect the degrees of the generators of the terms in a free complex
-
tallyDegrees(ChainComplex) -- collect the degrees of the generators of the terms in a free complex
-
TateData -- symbol used in beilinsonBundle
-
tateData -- reads TateData from the cache of an appropriate ring
-
tateData(Ring) -- reads TateData from the cache of an appropriate ring
-
tateExtension -- extend the terms in the Beilinson window to a part of a corner complex of the corresponding Tate resolution
-
tateExtension(ChainComplex) -- extend the terms in the Beilinson window to a part of a corner complex of the corresponding Tate resolution
-
TateOnProducts -- Computation of parts of the Tate resolution on products
-
tateResolution -- compute the Tate resolution
-
tateResolution(Matrix,List,List) -- compute the Tate resolution
-
tateResolution(Module,List,List) -- compute the Tate resolution
-
trivialHomologicalTruncation -- return the trivial truncation of a chain complex
-
trivialHomologicalTruncation(ChainComplex,ZZ,ZZ) -- return the trivial truncation of a chain complex
-
upperCorner -- compute the upper corner
-
upperCorner(ChainComplex,List) -- compute the upper corner