
The LIBINT Programmer’s Manual

LIBINT Version 1.2

Edward F. Valeev

Center for Computational Molecular Science and Technology,
Georgia Institute of Technology, Atlanta, Georgia 30332-0400

Created on: September 6, 2024

1 Introduction

LIBINT is a collection of functions to compute two-body integrals over Gaussian functions
which appear in electronic and molecular structure theories. LIBINT Version 1.2[1] has three
components which compute different types of integrals:

• libint computes the Coulomb integrals, which in electronic structure theory are called
electron repulsion integrals (ERIs). This is by far the most common type of integrals
in molecular structure theory.

• libderiv computes first and second derivatives of ERIs with respect to the coordi-
nates of the basis function origin. This type of integrals are also very common in the
electronic structure theory, where they appear in analytic gradient expressions.

• libr12 computes types integrals that appear in Kutzelnigg’s linear R12 theories for
electronic structure.[2, 3] All linear R12 methods, such as MP2-R12, contain terms in
the wave function that are linear in the interelectronic distances rij (hence the name).
Appearance of several types of two-body integrals is due to the use of the approximate
resolution of the identity to reduce three- and four-body integrals to products of simpler
integrals.

The components come as separate library archives, named libint.a, libderiv.a, and
libr12.a, with header files named libint.h, libderiv.h, and libr12.h, respectively. Note
that both libderiv and libr12 depend on functions in libint. In that sense libint is the
central component of LIBINT, thus we will libint most often as an example in this manual.

LIBINT uses recursive schemes that originate in seminal Obara-Saika method[4] and Head-
Gordon and Pople’s variation thereof.[5] The idea of LIBINT is to optimize computer imple-
mentation of such methods by implementing an optimizing compiler to generate automati-
cally highly-specialized code that runs well on superscalar architectures. The advantages of
the optimizing compiler approach are:

• it allows to achieve high-performance for the one-quartet-at-a-time method of com-
puting integrals. Thus LIBINT avoids vectorization as an approach to achieving high
efficiency, since vectorization increases memory footprint and complicates program-
ming. If the use of vector machines increases again, LIBINT will be vectorized, however
currently there are no firm plans to do that.

• new recurrence relations are rather easy to implement in efficient code. libr12 is a
good example of that.

For more details on priciples of LIBINT you should consult Justin Fermann’s thesis.[6]

2

2 Notation

Following Obara and Saika,[4] we write an unnormalized primitive Cartesian Gaussian func-
tion centered at A as

ϕ(r; ζ,n,A) = (x− Ax)
nx(y − Ay)

ny(z − Az)
nz

× exp[−ζ(r−A)2] , (1)

where r is the coordinate vector of the electron, ζ is the orbital exponent, and n is a set of
non-negative integers. The sum of nx, ny, and nz will be denoted λ(n) and be referred to as
the angular momentum or orbital quantum number of the Gaussian function. Hereafter n
will be termed the angular momentum index. Henceforth, ni will refer to the i-th component
of n, where i ∈ {x, y, z}. Basic vector addition rules will apply to these vector-like triads of
numbers, e.g. n+ 1x ≡ {nx + 1, ny, nz}.

A set of (λ(n) + 1)(λ(n) + 2)/2 functions with the same λ(n), ζ, and centered at the
common center but with different n form a Cartesian shell, or just a shell. For example, an
s shell (λ = 0) has one function, a p shell (λ = 1) – 3 functions, etc. The order of functions
in shells that LIBINT uses is as follows:

p : px, py, pz

d : dxx, dxy, dxz, dyy, dyz, dzz

f : fxxx, fxxy, fxxz, fxyy, fxyz, fxzz, fyyy, fyyz, fyzz, fzzz

etc.

In general, the following loop structure can be used to generate angular momentum indices
in the canonical LIBINT order for all members of a shell of angular momentum am:

for(int i=0; i<=am; i++) {

int nx = am - i; /* exponent of x */

for(int j=0; j<=i; j++) {

int ny = i-j; /* exponent of y */

int nz = j; /* exponent of z */

}

}

The normalization constant for a primitive Gaussian ϕ(r; ζ,n,A)

N(ζ,n) =

[(
2

π

)3/4
2(λ(n))ζ(2λ(n)+3)/4

[(2nx − 1)!!(2ny − 1)!!(2nz − 1)!!]1/2

]
(2)

A contracted Gaussian function is just a linear combination of primitive Gaussians (also
termed primitives) centered at the same center A and with the same momentum indices n
but with different exponents ζi:

ϕ(r; ζ,C,n,A) = (x− Ax)
nx(y − Ay)

ny(z − Az)
nz

×
M∑
i=1

Ci exp[−ζi(r−A)2] , (3)

3

Contracted Gaussians form shells the same way as primitives. The contraction coefficients
C already include normalization constants so that the resulting combination is properly nor-
malized. Published contraction coefficients c are linear coefficients for normalized primitives,
hence the normalization-including contraction coefficients C have to be computed from them
as

Ci = ciN(ζi,n) (4)

and scaled further so that the self-overlap of the contracted function is 1:

π3/2(2nx − 1)!!(2ny − 1)!!(2nz − 1)!!

2λ(n)

M∑
i=1

M∑
j=1

CiCj

(ζi + ζj)λ(n)+3/2
= 1 (5)

If sets of orbital exponents are used to form contracted Gaussians of one angular momen-
tum only then this is called a segmented contraction scheme. If there is a set of exponents
that forms contracted Gaussians of several angular momenta then such scheme is called gen-
eral contraction. Examples of basis sets that include general contractions include Atomic
Natural Orbitals (ANO) sets. LIBINT was not designed to handle general contractions very
well. You should use either split general contractions into segments for each angular mo-
mentum (it’s done for correlation consistent basis sets) or use basis sets with segmented
contractions only.

An integral of a two-electron operator Ô(r1, r2) over unnormalized primitive Cartesian
Gaussians is written as∫

ϕ(r1; ζa, a,A)ϕ(r2; ζc, c,C)Ô(r1, r2)ϕ(r1; ζb,b,B)ϕ(r2; ζd,d,D)dr1dr2 ≡ (ab|Ô|cd) (6)

A set of integrals {(ab|Ô(r1, r2)|cd)} over all possible combinations of functions a ∈ ShellA,
b ∈ ShellB, etc. is termed a shell, or quartet, or class of integrals. For example, a (ps|sd)
class consists of 3× 1× 1× 6 = 18 integrals.

The following definitions have been used throughout this work:

ζ = ζa + ζb (7)

η = ζc + ζd (8)

ρ =
ζη

ζ + η
(9)

P =
ζaA+ ζbB

ζ
(10)

Q =
ζcC+ ζdD

η
(11)

W =
ζP+ ηQ

ζ + η
(12)

Incomplete gamma function is defined as

Fm(T) =

∫ 1

0

dt t2m exp(−Tt2) (13)

4

Evaluation of integrals over functions of non-zero angular momentum starts with the
auxiliary integrals over primitive s-functions defined as

(00|00)(m) = 2Fm(ρ|PQ|2)
√

ρ

π
S12S34 (14)

where PQ = P−Q and primitive overlaps S12 and S34 are computed as

S12 =
(π
ζ

)3/2

exp
(
−ζaζb

ζ
|AB|2

)
(15)

S34 =
(π
η

)3/2

exp
(
−ζcζd

η
|CD|2

)
(16)

In the evaluation of integrals over contracted functions it is convenient to use auxiliary
integrals over primitives which include contraction and normalization factors of the target
quartet (ab|cd):

(00|00)(m) = 2Fm(ρ|PQ|2)
√

ρ

π
S12S34C1C2C3C4 (17)

where the coefficients Ca, Cb, Cc, and Cd are normalization-including contraction coefficients
(Eqs. (4) and (5)) for the first basis function out of each respective shell in the target quartet.

3 Overview of LIBINT’s API

Prototypes for externaly accessible functions of LIBINT’s components are contained in header
files libint.h libderiv.h and libr12.h. Although LIBINT’s machine generated source is
written in C++, functions and data structures of the external interface are linked according
to C convention, which simplifies its use in C and FORTRAN programs.

So let’s look at header file libint.h. Inside the standard header wrappers, library static
parameters are defined:

#define REALTYPE double

#define LIBINT_MAX_AM 8

#define LIBINT_OPT_AM 5

These parameters depend on how library was configured before compilation (see compilation
manual). The first macro is the basic datatype for real numbers that LIBINT uses to com-
pute integrals. It can be double or long double. With some compilers, e.g. IBM Visual
Age C++, the latter datatype allows higher precision calculations. Macro LIBINT MAX AM

specifies the maximum angular momentum + 1 of basis functions for which electron repul-
sion integrals can be computed. Hence in this example up to k functions (Lmax = 7) can be
handled.

Before any component of LIBINT can be used some static data has to be initialized via a
corresponding function call. That function for libint is

5

void init_libint_base();

After init libint base() has been called one has to initialize one or several correspond-
ing integrals evaluator objects. Objects are “constructed’ and “destructed” by calling the
following functions

int init_libint(Libint_t *, int max_am, int max_num_prim_comb);

void free_libint(Libint_t *);

The first argument to either function is the pointer to the object. Second and third arguments
to init libint() are the maximum angular momentum of the basis functions to be handled
by this object and the maximum number of combinations of primitives per shell quartet that
this object will handle. The latter quantity can be safely computed as a fourth power of
the maximum number of primitives per shell in the basis set. init libint() returns the
number of REALTYPE-sized words of memory that was allocated for the object. The amount of
memory depends heavily on max am and somewhat on max num prim comb. Memory tracking
is not done by LIBINT internally and is left to the user’s code. In order to compute how
much memory an evaluator object will require one can call the following function:

int libint_storage_required(int max_am, int max_num_prim_comb);

The return value is the number of REALTYPE-sized words of memory that a Libint t object
will require for the given values of max am and max num prim comb.

Note that integrals evaluator objects themselves are completely thread-safe and can be
used in multiple thread environments. However, init libint base() is not reentrant, hence
proper locking must be ensured. However, it needs to be called only once in the process,
after that all threads can use libint.

After a Libint t object has been initialized, we are ready to compute ERIs. In order to
do that user must provide shell quartet data to the evaluator object and call an appropriate
method to compute the integrals. LIBINT’s philosophy is to provide the leanest possible
code. Thus it does not provide any functionality related to computing recurrence relation
prerequisites, such as geometric quantities and incomplete gamma function values defined in
the previous section. It is fully user’s responsibility to compute the necessary data and feed
it to the evaluator object. So let’s look at the definition of Libint t:

typedef struct {

REALTYPE *int_stack;

prim_data *PrimQuartet;

REALTYPE AB[3];

REALTYPE CD[3];

REALTYPE *vrr_classes[15][15];

REALTYPE *vrr_stack;

} Libint_t;

6

The most important 3 members of the type are PrimQuartet, AB, and CD. All three of these
members have to be set properly before a shell quartet can be computed. PrimQuartet is
the array of data for each combination of primitives that contribute to this shell quartet.
The datatype for PrimQuartet is described below. AB and CD store quantities AB and CD
for this shell quartet. The rest of the data in Libint t object is not meant for external use.

While Libint t.AB and Libint .CD are trivial to compute, the primitive quartet data
is more involved. Let’s look at definition of prim data:

typedef struct pdata{

REALTYPE F[29];

REALTYPE U[6][3];

REALTYPE twozeta_a;

REALTYPE twozeta_b;

REALTYPE twozeta_c;

REALTYPE twozeta_d;

REALTYPE oo2z;

REALTYPE oo2n;

REALTYPE oo2zn;

REALTYPE poz;

REALTYPE pon;

REALTYPE oo2p;

REALTYPE ss_r12_ss;

} prim_data;

Let’s look at what quantities each component of prim data holds:

• F – values of auxiliary primitive integrals (00|00)(m) (Eq. (17)) for 0 ≤ m ≤ λ(a) +
λ(b) + λ(c) + λ(d) + C, where C = 0 when computing ERIs, C = 1 when computing
first derivative ERIs and integrals for linear R12 methods, and C = 2 when computing
second derivative ERIs.

• U – geometric quantities PA (U[0]), QC (U[2]), WP (U[4]), and WQ (U[5]). If
libderiv is being used then the following quatities are stored in U[1] and U[3]: PB
and QD. If libr12 is being used then the following quantities are stored in U[1] and
U[3]: QA and PC.

• twozeta a – 2ζa (only used by libderiv and libr12)

• twozeta b – 2ζb (only used by libderiv and libr12)

• twozeta c – 2ζc (only used by libderiv and libr12)

• twozeta d – 2ζd (only used by libderiv and libr12)

• oo2z – 1
2ζ

• oo2n – 1
2η

7

• oo2zn – 1
2(ζ+η)

• poz – ρ
ζ

• pon – ρ
η

• oo2p – 1
2ρ

• ss r12 ss – (00|r12|00) = 1
ρ
(00|00)(0) + |PQ|2((00|00)(0) − (00|00)(1)) (only used by

libr12)

Most of these quantities are simple to evaluate. Evaluation of the incomplete gamma function
prim data.F is more involved. One should consult external sources for information on how
to compute it efficiently.[4, 7]

Once the quartet data has been computed for every unique combination of primitives
and put into Libint t.PrimQuartet, ERIs can be computed. Appropriate functions are
accessed via a four-dimensional array of pointers called build eri:

extern REALTYPE *(*build_eri[8][8][8][8])(Libint_t *, int);

where the first argument is the integrals evaluator object, the second is the number of prim-
itive quartet combinations that were stored in the previous step in Libint t.PrimQuartet,
and the array indices refer to the angular momenta of respective shells. For example, a func-
tion which evaluates a quartet of (ps|ds) integrals is referred to as
build eri[1][0][2][0](inteval1,num prim comb). The functions return pointer to the
array that holds target integrals. The integrals are stored in “row major” order.[8] For ex-
ample, if the number of functions in each shell is na, nb, nc, and nd, respectively, then the
integral (ab|cd) is found at position abcd = ((anb + b)nc + c)nd + d.

Note that currently LIBINT has a very important restriction on the angular momentum
ordering of the functions in shell quartets that it can handle. LIBINT can evaluate a shell
quartet (ab|cd) if λ(a) ≥ λ(b), λ(c) ≥ λ(d), and λ(c) + λ(d) ≥ λ(a) + λ(b). If one needs
to compute a quartet that doesn’t conform the rule, e.g. of type (pf |sd), permutational
symmetry of integrals can be utilized to compute such quartet:1

(pq|rs) = (pq|sr) = (qp|rs) = (qp|sr) = (rs|pq) = (rs|qp) = (sr|pq) = (sr|qp) (18)

In the case of (pf |sd) shell quartet, one computes quartet (ds|fp) instead, and then permutes
function indices back to obtain the desired (pf |sd).

The final integrals that LIBINT computes are not fully normalized yet. The reason is that
the auxiliary integrals (00|00)(m) include normalization factors of the first function of each
shell. For example, in a (ds|fp) quartet computed by LIBINT only integrals (dxxs|fxxxpx),
(dyys|fxxxpx), (dxxs|fyyypx), etc., will be properly normalized. In order to compute integrals

1Note that some of the integrals that libr12 computes possess different permutational symmetries than
ERIs. One can still compute all desired integrals in that case.

8

in terms of functions which are all normalized to unity one has to multiply each integral by
a “renormalization” prefactor:

(ab|cd) ≡ N(ζa, a)N(ζb,b)N(ζc, c)N(ζd,d)

N(ζa,

λ(a)
0
0

)N(ζb,

λ(b)
0
0

)N(ζc,

λ(c)
0
0

)N(ζd,

λ(d)
0
0

)

(ab|cd) (19)

3.1 Notes on using libderiv

Component libderiv is used to evaluate derivatives of ERIs with respect to basis function
positions. Using libderiv is mostly similar to how libint is used. Here we only concentrate
on significant differences which have not been noted before or on aspects of use specific to
libderiv.

One quartet of ERIs (ab|cd) has total of 12 first derivatives

∂(ab|cd)
∂Ai

,
∂(ab|cd)

∂Bi

,
∂(ab|cd)

∂Ci

,
∂(ab|cd)

∂Di

: i ∈ {x, y, z}

and 12∗12 = 144 second derivatives, although 12∗13/2 = 78 derivatives are unique because
of permutation symmetry with respect to the order of taking the derivative:

∂2(ab|cd)
∂Ai∂Aj

,
∂2(ab|cd)
∂Bi∂Bj

,
∂2(ab|cd)
∂Ci∂Cj

,
∂2(ab|cd)
∂Di∂Dj

: i ≤ j ∈ {x, y, z}

∂2(ab|cd)
∂Ai∂Bj

,
∂2(ab|cd)
∂Ai∂Cj

,
∂2(ab|cd)
∂Ai∂Dj

,

∂2(ab|cd)
∂Bi∂Cj

,
∂2(ab|cd)
∂Bi∂Dj

,
∂2(ab|cd)
∂Ci∂Dj

: i, j ∈ {x, y, z}

Translational invariance of ERIs can be used to eliminate any 3 of 12 first derivatives

∂(ab|cd)
∂Bi

= −∂(ab|cd)
∂Ai

− ∂(ab|cd)
∂Ci

− ∂(ab|cd)
∂Di

i ∈ {x, y, z} (20)

9

and 33 of 78 second derivatives

∂2(ab|cd)
∂Ai∂Bj

= −∂2(ab|cd)
∂Ai∂Aj

− ∂2(ab|cd)
∂Ai∂Cj

− ∂2(ab|cd)
∂Ai∂Dj

i, j ∈ {x, y, z} (21)

∂2(ab|cd)
∂Bi∂Bj

=
∂2(ab|cd)
∂Ai∂Aj

+
∂2(ab|cd)
∂Ai∂Cj

+
∂2(ab|cd)
∂Ai∂Dj

∂2(ab|cd)
∂Ai∂Cj

+
∂2(ab|cd)
∂Ci∂Cj

+
∂2(ab|cd)
∂Ci∂Dj

∂2(ab|cd)
∂Aj∂Di

+
∂2(ab|cd)
∂Cj∂Di

+
∂2(ab|cd)
∂Di∂Dj

i ≤ j ∈ {x, y, z} (22)

∂2(ab|cd)
∂Bi∂Cj

= −∂2(ab|cd)
∂Ai∂Cj

− ∂2(ab|cd)
∂Ci∂Cj

− ∂2(ab|cd)
∂Cj∂Di

i, j ∈ {x, y, z} (23)

∂2(ab|cd)
∂Bi∂Dj

= −∂2(ab|cd)
∂Ai∂Dj

− ∂2(ab|cd)
∂Ci∂Dj

− ∂2(ab|cd)
∂Di∂Dj

i, j ∈ {x, y, z} (24)

(25)

While libint computes one target quartet at a time, libderiv evaluates all of its possible
unique derivatives. There are 2 types of “compute” functions in libderiv (see libderiv.h):

extern void (*build_deriv1_eri[5][5][5][5])(Libderiv_t *, int);

extern void (*build_deriv12_eri[4][4][4][4])(Libderiv_t *, int);

The former refers to functions which compute only first derivative ERIs, and the second
refers to functions which compute both first and second derivative ERIs. The dimensions of
each array are determined by the following 2 configure-time macros:

#define LIBDERIV_MAX_AM1 5

#define LIBDERIV_MAX_AM12 4

Note that “compute” functions in libint, build eri, simply return a pointer to the
target quartet, whereas libderiv’s functions return target data through integrals evaluator
object, Libderiv t. Such objects are initialized using one of the following functions:

int init_libderiv1(Libderiv_t *, int max_am, int max_num_prim_quartets,

int max_cart_class_size);

int init_libderiv12(Libderiv_t *, int max_am, int max_num_prim_quartets,

int max_cart_class_size);

These functions initialize objects for use with build deriv1 eri and build deriv12 eri

compute functions, respectively. It is illegal to use a Libderiv t object initialized by
init libderiv1() with build deriv12 eri compute functions. Memory requirements for
initializing these two types of objects are evaluated using

10

int libderiv1_storage_required(int max_am, int max_num_prim_quartets,

int max_cart_class_size);

int libderiv12_storage_required(int max_am, int max_num_prim_quartets,

int max_cart_class_size);

Structure of Libderiv t is essentially similar to Libint t:

typedef struct {

double *int_stack;

prim_data *PrimQuartet;

double *zero_stack;

double *ABCD[12+144];

double AB[3];

double CD[3];

double *deriv_classes[9][9][12];

double *deriv2_classes[9][9][144];

double *dvrr_classes[9][9];

double *dvrr_stack;

} Libderiv_t;

User passes quartet data to libderiv through PrimQuartet, AB, and CD. Data is returned
through member ABCD. The dimension of ABCD is explicitly written as 12+144 which refer to
the number of all (including nonunique) first and second derivatives of ERIs. If a derivative

index runs For example, ABCD[4] and ABCD[11] point to derivative quartets ∂(ab|cd)
∂By

and
∂(ab|cd)

∂Dz
, respectively. Similarly, ABCD[13] and ABCD[27] refer to ∂2(ab|cd)

∂Ax∂Ay
and ∂2(ab|cd)

∂Ay∂Bx
,

respectively.

Due to the translation invariance relations and the permutational symmetry of the second
derivative integrals, some derivative quartets are not computed and thus only some elements
of this array are initialized. Eqs. (20-24) specify how to evaluate elements which are not
computed. Thus build deriv1 eri() and build deriv12 eri() functions produce 9 and
9+45 = 54 unique derivative quartets, respectively. The unique quartets and corresponding

11

elements of Libderiv t.ABCD are listed here:

∂(ab|cd)
∂Ax

0
∂2(ab|cd)
∂Ay∂Ay

25
∂2(ab|cd)
∂Cx∂Dx

93

∂(ab|cd)
∂Ay

1
∂2(ab|cd)
∂Ay∂Az

26
∂2(ab|cd)
∂Cx∂Dy

94

∂(ab|cd)
∂Az

2
∂2(ab|cd)
∂Ay∂Cx

30
∂2(ab|cd)
∂Cx∂Dz

95

∂(ab|cd)
∂Cx

6
∂2(ab|cd)
∂Ay∂Cy

31
∂2(ab|cd)
∂Cy∂Cy

103

∂(ab|cd)
∂Cy

7
∂2(ab|cd)
∂Ay∂Cz

32
∂2(ab|cd)
∂Cy∂Cz

104

∂(ab|cd)
∂Cz

8
∂2(ab|cd)
∂Ay∂Dx

33
∂2(ab|cd)
∂Cy∂Dx

105

∂(ab|cd)
∂Dx

9
∂2(ab|cd)
∂Ay∂Dy

34
∂2(ab|cd)
∂Cy∂Dy

106

∂(ab|cd)
∂Dy

10
∂2(ab|cd)
∂Ay∂Dz

35
∂2(ab|cd)
∂Cy∂Dz

107

∂(ab|cd)
∂Dz

11
∂2(ab|cd)
∂Az∂Az

38
∂2(ab|cd)
∂Cz∂Cz

116

∂2(ab|cd)
∂Ax∂Ax

12
∂2(ab|cd)
∂Az∂Cx

42
∂2(ab|cd)
∂Cz∂Dx

117

∂2(ab|cd)
∂Ax∂Ay

13
∂2(ab|cd)
∂Az∂Cy

43
∂2(ab|cd)
∂Cz∂Dy

118

∂2(ab|cd)
∂Ax∂Az

14
∂2(ab|cd)
∂Az∂Cz

44
∂2(ab|cd)
∂Cz∂Dz

119

∂2(ab|cd)
∂Ax∂Cx

18
∂2(ab|cd)
∂Az∂Dx

45
∂2(ab|cd)
∂Dx∂Dx

129

∂2(ab|cd)
∂Ax∂Cy

19
∂2(ab|cd)
∂Az∂Dy

46
∂2(ab|cd)
∂Dx∂Dy

130

∂2(ab|cd)
∂Ax∂Cz

20
∂2(ab|cd)
∂Az∂Dz

47
∂2(ab|cd)
∂Dx∂Dz

131

∂2(ab|cd)
∂Ax∂Dx

21
∂2(ab|cd)
∂Cx∂Cx

90
∂2(ab|cd)
∂Dy∂Dy

142

∂2(ab|cd)
∂Ax∂Dy

22
∂2(ab|cd)
∂Cx∂Cy

91
∂2(ab|cd)
∂Dy∂Dz

143

∂2(ab|cd)
∂Ax∂Dz

23
∂2(ab|cd)
∂Cx∂Cz

92
∂2(ab|cd)
∂Dz∂Dz

155

Each derivative quartet is identical in structure to a nondifferentiated quartet, i.e. in-
dividual integrals are arranged in a row major order. Normalization convention for the
derivative integrals is the same as for the regular ERIs.

3.2 Notes on using libr12

Component libr12 is used to evaluate integrals used in linear R12 theories[2, 3, 9, 10]. over
operators 1

r12
, r12, [r12, T̂1], and [r12, T̂2]. Using libr12 is mostly similar to how libint is

used. Here we only concentrate on significant differences which have not been noted before
or on aspects of use specific to libr12.

There are two types of compute functions in libr12 (see libr12.h):

12

extern void (*build_r12_gr[7][7][7][7])(Libr12_t *, int);

extern void (*build_r12_grt[7][7][7][7])(Libr12_t *, int);

The former computes integrals of operators 1
r12

(”g”) and r12 (”r”) only,
2 whereas in addition

the latter computes also integrals of operators [r12, T̂1] and [r12, T̂2] (”t”).
3 The size of each

dimension of these function pointer arrays is determined by

#define LIBR12_MAX_AM 7

which corresponds to the maximum angular momentum of basis functions which libr12 can
handle, incremented by one.

Evaluator object type Libr12 t is defined as

#define NUM_TE_TYPES 4

typedef struct {

REALTYPE *int_stack;

prim_data *PrimQuartet;

contr_data ShellQuartet;

REALTYPE *te_ptr[NUM_TE_TYPES];

REALTYPE *t1vrr_classes[13][13];

REALTYPE *t2vrr_classes[13][13];

REALTYPE *rvrr_classes[13][13];

REALTYPE *gvrr_classes[14][14];

REALTYPE *r12vrr_stack;

} Libr12_t;

The usual array of data structures PrimQuartet is there along with a new data structure
ShellQuartet for shell quartet data into which Libint t’s AB and CD have migrated:

typedef struct {

REALTYPE AB[3];

REALTYPE CD[3];

REALTYPE AC[3];

REALTYPE ABdotAC, CDdotCA;

} contr_data;

Members of the data structure correspond to the following quantities: AB, CD, AC, AB ·
AC, and CD · CA. Before computing a set of shell quartet, one initializes PrimQuartet

with the primitive quartet data and ShellQuartet with the shell quartet data. Pointers to

2As of this writing, these functions have not been implemented yet.
3Note that in the literature the sum of reversed commutators is usually used, i.e. [T̂1 + T̂2, r12] =

−[r12, T̂1]− [r12, T̂2].

13

computed shell quartets are returned in Libr12 t.te ptr. te ptr[0] refers to the quartet of
ERIs, te ptr[1] – to the quartet of integrals of the r12 operator, te ptr[2] – to the quartet
of integrals of the [r12, T̂1] operator, te ptr[3] – to the quartet of integrals of the [r12, T̂2]
operator. The integrals follow the aforementioned normalization convention of LIBINT.

One must remember that the commutator integrals have different permutational symme-
try than ERIs and integrals of the r12 operator, namely:

(pq|[r12, T̂1]|rs) = (pq|[r12, T̂1]|sr) = −(qp|[r12, T̂1]|rs) = −(qp|[r12, T̂1]|sr) =
= (rs|[r12, T̂2]|pq) = (sr|[r12, T̂2]|pq) = −(rs|[r12, T̂2]|qp) = −(sr|[r12, T̂2]|qp) (26)

One must keep them in mind when computing such integrals with libr12because of the
required preordering of shells in the shell quartet according to the canonical LIBINT order
(see above). To obtain the desired integrals shells need to be reordered back, which is slightly
more involved for the commutator integrals than for ERIs. Nevertheless, the reordering
is always possible because integrals of both [r12, T̂1] and [r12, T̂2] operators are computed
simultaneously.

4 Example: using libint

References

[1] J. T. Fermann and E. F. Valeev. Libint: Machine-generated library for effi-
cient evaluation of molecular integrals over Gaussians, 2003. Freely available at
http://www.ccmst.gatech.edu/evaleev/libint/ or one of the authors.

[2] W. Kutzelnigg. r12-dependent terms in the wave function as closed sums of partial wave
amplitudes for large l. Theor. Chim. Acta, 68:445, 1985.

[3] W. Kutzelnigg and W. Klopper. Wave functions with terms linear in the interelectronic
coordinates to take care of the correlation cusp. I. General theory. J. Chem. Phys.,
94:1985, 1991.

[4] S. Obara and A. Saika. Efficient recursive computations of molecular integrals over
Cartesian Gaussian functions. J. Chem. Phys., 84:3963, 1986.

[5] M. Head-Gordon and J. A. Pople. A method for 2-electron Gaussian integral and integral
derivative evaluation using recurrence relations. J. Chem. Phys., 89:5777, 1988.

[6] J. T. Fermann. Efficient implementation of vertical recursion relations for the generation
of electron repulsion intgerals. PhD thesis, University of Georgia, 1996.

[7] P. M. W. Gill and J. A. Pople. The prism algorithm for 2-electron integrals. Int. J.
Quantum Chem., 40:753, 1991.

[8] D. E. Knuth. The Art of Computer Programming. Addison-Wesley, Reading, MA, third
edition, 1997.

14

[9] W. Klopper and R. Röhse. Computation of some new two-electron Gaussian integrals.
Theor. Chim. Acta, 83:441, 1992.

[10] E. F. Valeev and H. F. Schaefer. Evaluation of two-electron integrals for explicit r12
theories. J. Chem. Phys., 113:3990, 2000.

15

