Information for RPM python-lfpykit-0.5.1-4.fc41.src.rpm

ID275526
Buildpython-lfpykit-0.5.1-4.fc41
Namepython-lfpykit
Version0.5.1
Release4.fc41
Epoch
Archsrc
DraftFalse
SummaryElectrostatic models for multicompartment neuron models
DescriptionThis Python module contain freestanding implementations of electrostatic forward models incorporated in LFPy (https://github.com/LFPy/LFPy, https://LFPy.readthedocs.io). The aim of the LFPykit module is to provide electrostatic models in a manner that facilitates forward-model predictions of extracellular potentials and related measures from multicompartment neuron models, but without explicit dependencies on neural simulation software such as NEURON (https://neuron.yale.edu, https://github.com/neuronsimulator/nrn), Arbor (https://arbor.readthedocs.io, https://github.com/arbor-sim/arbor), or even LFPy. The LFPykit module can then be more easily incorporated with these simulators, or in various projects that utilize them such as LFPy (https://LFPy.rtfd.io, https://github.com/LFPy/LFPy). BMTK (https://alleninstitute.github.io/bmtk/, https://github.com/AllenInstitute/bmtk), etc. Its main functionality is providing class methods that return two-dimensional linear transformation matrices M between transmembrane currents I of multicompartment neuron models and some measurement Y given by Y=MI. The presently incorporated volume conductor models have been incorporated in LFPy (https://LFPy.rtfd.io, https://github.com/LFPy/LFPy), as described in various papers and books: - Linden H, Hagen E, Leski S, Norheim ES, Pettersen KH, Einevoll GT (2014) LFPy: a tool for biophysical simulation of extracellular potentials generated by detailed model neurons. Front. Neuroinform. 7:41. doi: 10.3389/fninf.2013.00041 - Hagen E, Næss S, Ness TV and Einevoll GT (2018) Multimodal Modeling of Neural Network Activity: Computing LFP, ECoG, EEG, and MEG Signals With LFPy 2.0. Front. Neuroinform. 12:92. doi: 10.3389/fninf.2018.00092 - Ness, T. V., Chintaluri, C., Potworowski, J., Leski, S., Glabska, H., Wójcik, D. K., et al. (2015). Modelling and analysis of electrical potentials recorded in microelectrode arrays (MEAs). Neuroinformatics 13:403–426. doi: 10.1007/s12021-015-9265-6 - Nunez and Srinivasan, Oxford University Press, 2006 - Næss S, Chintaluri C, Ness TV, Dale AM, Einevoll GT and Wójcik DK (2017). Corrected Four-sphere Head Model for EEG Signals. Front. Hum. Neurosci. 11:490. doi: 10.3389/fnhum.2017.00490
Build Time2024-06-23 13:05:30 GMT
Size2.85 MB
9052130ab0c1ba1f457f611754334f4f
LicenseGPL-3.0-or-later
Buildrootf41-build-1140275-20930
Provides
python-lfpykit-doc = 0.5.1-4.fc41
python3-lfpykit = 0.5.1-4.fc41
Obsoletes No Obsoletes
Conflicts No Conflicts
Requires
pyproject-rpm-macros
python3-devel
python3-devel
python3dist(meautility)
python3dist(numpy) >= 1.15.2
python3dist(packaging)
python3dist(pip) >= 19
python3dist(pytest)
python3dist(scipy)
python3dist(setuptools) >= 40.8
python3dist(sympy)
python3dist(wheel)
rpmlib(CompressedFileNames) <= 3.0.4-1
rpmlib(DynamicBuildRequires) <= 4.15.0-1
rpmlib(FileDigests) <= 4.6.0-1
Recommends No Recommends
Suggests No Suggests
Supplements No Supplements
Enhances No Enhances
Files
1 through 2 of 2
Name ascending sort Size
LFPykit-0.5.1.tar.gz2.82 MB
python-lfpykit.spec5.88 KB
Component of No Buildroots